Efficient training algorithms for HMMs using incremental estimation

نویسندگان

  • Yoshihiko Gotoh
  • Mike Hochberg
  • Harvey F. Silverman
چکیده

Typically, parameter estimation for a hidden Markov model (HMM) is performed using an expectation-maximization (EM) algorithm with the maximum-likelihood (ML) criterion. The EM algorithm is an iterative scheme which is well-deened and numerically stable, but convergence may require a large number of iterations. For speech recognition systems utilizing large amounts of training material, this results in long training times. This paper presents an incre-mental estimation approach to speed-up the training of HMMs without any loss of recognition performance. The algorithm selects a subset of data from the training set, updates the model parameters based on the subset, and then iterates the process until convergence of the parameters. The advantage of this approach is a substantial increase in the number of iterations of the EM algorithm per training token which leads to faster training. In order to achieve reliable estimation from a small fraction of the complete data set at each iteration, two training criteria are studied; ML and maximum a posteriori (MAP) estimation. Experimental results show that the training of the incremental algorithms is substantially faster than the conventional (batch) method and suuers no loss of recognition performance. Furthermore, the incremental MAP based training algorithm improves performance over the batch version.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental MAP estimation of HMMs for efficient training and improved performance

Continuous density observation hidden Markov models (CD-HMMs) have been shown to perform better than their discrete counterparts. However, because the observation distribution is usually represented with a mixture of multi-variate normal densities, the training time for a CD-HMM can be prohibitively long. This paper presents a new approach to speed-up the convergence of CD-HMM training using a ...

متن کامل

Training Algorithms for Hidden Markov Models using Entropy Based Distance Functions

We present new algorithms for parameter estimation of HMMs. By adapting a framework used for supervised learning, we construct iterative algorithms that maximize the likelihood of the observations while also attempting to stay “close” to the current estimated parameters. We use a bound on the relative entropy between the two HMMs as a distance measure between them. The result is new iterative t...

متن کامل

Incremental word learning using large-margin discriminative training and variance floor estimation

We investigate incremental word learning in a Hidden Markov Model (HMM) framework suitable for human-robot interaction. In interactive learning, the tutoring time is a crucial factor. Hence our goal is to use as few training samples as possible while maintaining a good performance level. To adapt the states of the HMMs, different large-margin discriminative training strategies for increasing th...

متن کامل

Incremental word learning: Efficient HMM initialization and large margin discriminative adaptation

In this paper we present an incremental word learning system that is able to cope with few training data samples to enable speech acquisition in on-line human robot interaction. As with most automatic speech recognition systems (ASR), our architecture relies on a Hidden Markov Model (HMM) framework where the different word models are sequentially trained and the system has little prior knowledg...

متن کامل

A tool - box for hidden Markov models with two novel , memory efficient parameter training algorithms

Hidden Markov models (HMMs) are powerful statistical tools for biological sequence analysis. Many recently developed Bioinformatics applications employ variants of HMMs to analyze diverse types of biological data. It is typically fairly easy to design the states and the topological structure of an HMM. However, it can be difficult to estimate parameter values which yield a good prediction perfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Speech and Audio Processing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1998